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ABSTRACT

This paper describes a means of analyzing driver’s
performance with driving data taken from test tracks
and driving simulators for vehicles encountering rear-
end driving conflicts. Measures of time-to-collision
and estimated closest approach appear to allow better
comparison between driving conflicts and driver’s
responses to conflicts under different conditions.
Similar methods may be applied to field operational
test data for evaluation of driver characteristics and
safety measures.

INTRODUCTION

This paper consolidates three aspects of the art-and-
science of describing the crash avoidance
performance of motor vehicle drivers. The first
aspect is the recognition that drivers utilize a two-
stage process when responding to situations with the
potential of producing a crash – the threat
management stage followed by the maintenance
stage. The second aspect is the methodology for
creating parametric estimates of driver’s performance
during the first stage, described as the threat
management stage. The third aspect is an example of
the uses of the parametric description to assess
driver’s performance. The paper includes examples
that demonstrate the two-stage braking process. It
draws the conclusion that a segment of time that
extends two seconds beyond the time of maximum
braking by the following-vehicle captures driver’s
performance during the threat management stage.
Finally, the paper demonstrates that the distribution
of effective closest approach is a good measure of the
likelihood of a crash for a given situation.

Test-track data from the CAMP project [1] is chosen
to demonstrate an estimation method for all recorded
driving signals. This estimation of parameters is
based on a multivariate, non-linear regression
procedure generally outlined in the references [2, 3,
4]. Optimized, best-fit results are obtained on driving
data from a large portion of the sample database.

These results of driver’s reactions are subsequently
analyzed with the use of the concept of a crash
prevention boundary [5, 6] to provide an
improvement in understanding driver’s performance.

Characterizing Rear-End Driving Scenarios

A typical rear-end driving scenario is defined as one
where a lead-vehicle in the same lane brakes or is
moving so slowly that it presents a driving conflict
for the following-vehicle driver. Realizing the
conflict, the following-vehicle driver, after a short
time delay to decide, brakes and/or steers in order to
avoid a crash. Prior to the following-vehicle braking,
the range (distance between the two vehicles) is
decreasing as a function of time causing a negative
range rate, dR/dt, as the two vehicles are closing on
each other. Depending on the degree and timing of
the driver’s response there are two projected
outcomes of the driving conflict and the ensuing
response: either a) the following-vehicle stops first or
b) the lead-vehicle stops first.

Scenario I – Following-Vehicle Stops First

Consider an example of lead-vehicle braking where
the following-vehicle stops first. In Figure 1(a) a
driving conflict is presented by the lead-vehicle
deceleration at a constant level of 0.3 g starting at
time zero (point 1). Then at point 2 the following-
vehicle brakes at a sufficiently high level (0.6 g after
3.5 sec.) to avoid a crash. At 5.8 seconds into the
scenario (point 3) the range begins to increase
showing that the two vehicles have begun to separate.
Following this, it can be seen that the following-
vehicle comes to a stop (point 4) while the lead-
vehicle is still moving. At the point of closest
approach (point 3), range between the two vehicles
was equal to 30 feet as shown by the Range-Rate by
Range plot of Figure 1(b). Closest approach here is
used to refer to that point where the two vehicles are
at a minimum distance from each other for the
driving scenario. The relevant points in time from
the time plot of Figure 1(a) are also shown in the
Range Rate/Range trajectory. Had the following-
vehicle driver responded differently, e.g. applying
only 0.4g after 3.5 sec., there would have been a
collision resulting from the driving conflict. This
type of response is shown by the theoretical Range-
Rate/Range trajectory in Figure 2.
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Figure 1(a). Time Plot Where Following-Vehicle Stops First.

Figure 1(b). Phase Plot Where Following-Vehicle Stops First.

Figure 2. Phase Plot Where A Crash Results.

0

20

40

60

80

100

0 2 4 6 8 10

time (sec.)

ft
./s

ec
.

0

20

40

60

80

100

ft
.

VF(t)

VL(t)

Range(t)

1

2

3

4

5

0

10

20

30

40

50

60

70

80

90

100

-30 -20 -10 0 10 20

Range Rate, Rdot (ft./sec.)

R
an

ge
(f

t.
)

1

2

3

4

5

0

10

20

30

40

50

60

70

80

90

100

-25 -20 -15 -10 -5 0

Rdot (ft./sec.)

R
an

ge
(f

t.)



Burgett, 3

Thus, the end result of the following-vehicle reaction
to a conflict as shown by the theoretical Range-
Rate/Range trajectory shows whether there was a
crash, a near miss, or a safely managed driving
situation; and this final result has also been used as a
method of classifying both the pre-crash conflict
conditions and the driver’s response to those
conditions.

Scenario II – Lead-Vehicle Stops First

Consider another scenario as shown in Figure 3,
where the lead-vehicle stops first. To begin the
scenario, the lead-vehicle brakes at a constant level of
0.4g. The following-vehicle responds by braking at
approximately 1.6 seconds (point 1). Later (point 2)
the braking response is reduced as shown by the non-
linearity in the VF(t) and the Range(t) curves as well
as the Range-Rate/Range trajectory. The following-
vehicle driver successfully managed the conflict
between points 1 and 2 but then reduced braking
between points 2 and 3 after the situation was
brought under control. At point 3 (4 seconds) into
the scenario, the driver resumed braking to further
manage the situation during which time the lead-
vehicle stopped at 5.8 seconds; and then the
following-vehicle stopped at 6.1 seconds (point 4).
In this driving scenario the following-vehicle stopped
at a closest approach of approximately 13 feet to the
lead-vehicle.

As demonstrated by the previous scenario, the
following-vehicle driver will often brake in an
uneven fashion in order to manage a conflict. This
uneven braking has heretofore been difficult to
describe in a general way. The approach in most
cases has been to assume a constant value for
following-vehicle braking that begins at a specific
time after the initiation of a driving conflict and ends
at the end of the scenario.

Characterizing Driving Scenarios Using
Optimization

From the two examples in the preceding section, it
can be seen that driver’s response follows broad
patterns associated with decelerating lead-vehicles,
but there is a wide range of variation in the details of
the braking response. One way of simplifying this
picture is to have a parametric characterization of the
motion of both vehicles. The means of
characterization used in this paper is to describe the
deceleration of each vehicle during the threat
management stage by two parameters: the time at
which effective deceleration begins and the level of

deceleration. The level of deceleration is considered
to be a constant-but only for a well-defined period of
time. It is important to note from the outset that such
characterization describes the threat management, or
crash prevention, performance but does not
necessarily describe the performance throughout the
entire event. Thus, extrapolations of vehicle motion
beyond the threat management stage may not match
actual vehicle motions. The process used to establish
the most appropriate value as a function of time for
each of four key driving parameters is described in
the following paragraphs.

An optimization process was chosen that uses a
parameterized model of driver’s performance and
determines the best values for the parameters. This
process is based on a non-linear regression approach
by Marquardt [2] and others [3,4]. For the purpose
here, the optimization process is adapted to a rear-end
driving scenario as a function of time from beginning
to end including kinematics and driver’s responses.
The initial, pre-crash conditions, the following-
vehicle driver’s response time and braking level, the
closest approach of the two vehicles, and the
definition of the beginning and the end of the
scenario must all be considered as part of the
optimization process.

The cornerstone of any parameter optimization
process is creation of a function that measures the
goodness of fit between the actual variables (such as
velocities and positions) of vehicle motion and the
estimates that result from the parametric
characterization of motion. In this paper, a function
that utilizes the difference between actual and
estimates of each velocity and the difference between
actual and estimate of distance between the two
vehicles (Range) is used. The sum of the squares of
the error function (SSE) for a scenario is given by the
following expression (for 0 < t < T, the integration
interval):

∫
−+

−+−=
T

0 2
optexp

2
FoptFexp

2
LoptLexp

dt)]R(R

)V(V)V[(VSSE

where:
T is the upper limit of integration,
VLexp is the experimental value of lead-vehicle
velocity,
VLopt is the optimized value of lead-vehicle velocity,
VFexp is the experimental value of following-vehicle
velocity,
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Figur 3(a). Time Plot Where Lead-Vehicle Stops First.

Figure 3(b). Phase Plot Where Lead-Vehicle Stops First.

VFopt is the optimal value of following-vehicle
velocity,
Rexp is the experimental value of distance between the
two vehicles, and
Ropt is the optimal value of distance between the two
vehicles,

The variables VLexp, VFexp, and Rexp are variables
derived from the experimental data. The variables
VLopt, VFopt, and Ropt are computed estimates based
on the optimizer’s trial values of driver’s braking
time and constant level of deceleration, which are
similarly based on experimental values. The form of
this function emphasizes the importance of accurately

matching the velocities of each vehicle as well as the
distance between the two vehicles throughout the
threat management stage.

As such, the parameter optimization process consists
of an iterative calculation to minimize the value of
SSE for different estimates of the four parameters.
The value of each parameter is adjusted between
iterations by an minimization algorithm that
methodically produces a lower value of SSE at each
iteration.

At the beginning of each iteration, the approximate
values of VLopt, VFopt, and Ropt are reset equal to the
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actual values of each variable at time zero. A typical
rear-end driving scenario was used to evaluate the
Excel minimization algorithm (Solver) to examine
the possibility of several local minima rather than one
global minimum for the four-dimensional function
(SSE, tFb, dF, and dL). Appendix A shows the result
of this analysis to reveal one global minimum for this
type of function.

Constraints forced on the optimizer solution are that
deceleration values, dF and dL, are constant for the
optimization period, T; and that T extends only a
fixed amount beyond the peak experimental value of
dF. The actual value of T will be determined by
iterative trials on large data sets. Assumed constant
values of deceleration for the period T allows a
straightforward description of the final driver’s
response as is described later.

Refinement of the Optimization Process Using
Experimental Data

The purpose of the parameter optimization process is
to establish a parametric description of the driver’s
performance during the threat management stage of
response. Thus, it is important, as part of the
optimization process, to establish the time segment of
driver’s response that corresponds to the threat
management stage. The integration interval, T, is the
mechanism for establishing this segment of the
response. At a minimum, T needs to be sufficiently
long to include the time at which maximum braking
of the following-vehicle occurs. However, if the
value of T is too large the integration interval will
extend into the second stage of driver’s performance
and resulting values of computed deceleration will be
lower. To determine if an integration period that
extends beyond this point of maximum braking is
needed, an exploratory study was conducted using a
variable optimization time for each driving scenario
as well as a fixed optimization time.

Optimization, Using a Varying Time Interval

In the first approach, the integration interval, T, was
varied beyond the peak braking response for a
increasing increments of time. This approach is
based on observation of the fact that the following-
vehicle braking response generally rises to a peak
value and then stays nearly flat or drops off rapidly as
shown in Figure 4(a). In this example the following-
vehicle braking profile (dF) starts at point 1 (2.5
sec.), reaches a peak at point 2 (3.8 sec.), then drops
to a minimum at point 3 (5.8 sec.), and reaches a
secondary peak at point 4 (9.03 sec.). These points
are reflected in the phase plot of 4(b) where Rdot

reaches a maximum of approximately –1.5 ft./sec
shortly after point 2. Between points 1 and 2 the
driver appears to brake enough to be able to manage
the situation. From points 2 to 3 braking is reduced
until point 3 where braking is reapplied. Point 3 is
the beginning of stage two of the driver’s response.
This follows the threat management stage and is the
stage where the driver modulates braking to achieve
the desired final position of the vehicle.

A scenario with a braking response that has a quick
rise time and drop off, such as shown in Figure 4,
looks as if it could be optimized easily within one
second after the point of maximum braking.

The test track data used for development of the
parameter optimization process was created during a
project that was performed by the Crash Avoidance
Metrics Partnership (CAMP)[1]. These data
consisted of a series of rear-end braking experiments
generated on a controlled environment test track.
The lead-vehicle was designed to brake at a three
different constant levels for different experiments.
Instrumentation for the lead-vehicle attempted to
keep the deceleration level constant for a particular
experiment. The following-vehicle drivers were
given two specific types of braking instructions in the
face of the braking lead-vehicle – hard braking and
normal braking (no warning equipment was used). In
the hard or “last-second” braking experiments, the
following-vehicle drivers were instructed to “wait to
brake until the last possible moment in order to avoid
colliding with the lead-vehicle which was slowing
[down].” In the normal braking experiments drivers
were instructed to brake as they normally would in
ordinary driving as necessary to avoid a crash with
the lead-vehicle. In both braking groups, no
instructions were given other than those related to
braking.

The database contains approximately 1900 scenarios.
In these scenarios the beginning time (lead-vehicle
brake initiation) and other features of driver’s
performance are well documented. Optimization was
performed on the entire CAMP database of normal
and hard braking experiments using a variable
optimization time, T, and the constraint that the
difference between the actual closest approach from
experimental data and the estimate of closest
approach from optimized values (the ECA error) was
no greater than 6.5 ft. The value of T was increased
in steps until the ECA error was less than 6.5 ft.
Estimated Closest Approach is defined as the
minimum value of Range between the two vehicles
for a given scenario.
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Figure 5 shows the result of ECA comparisons of
normal and hard braking data from CAMP data after

optimization using the 6.5 ft. constraint. The

Figure 4(a). Time Plot of Braking Profiles.

Figure 4(b). Phase Plot Reflecting Braking Profiles

Figure 5. Estimated Closest Approach for Variable Time Interval.
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histogram in Figures 6(a) also shows the cumulative
distribution of the ECA error for normal braking.
Note that the value of T for the first optimization
cycle is the time at maximum braking. From the
cumulative distribution of Figure 6 it can be seen that
about 80 percent of the events had ECA error less
than the 6.5 ft. condition. This means that for those
events, the value of the difference between actual
closest approach and approximated closest approach
was less that 6.5 ft for the initial value of integration
interval, i.e. T = tFb. For the other 20 percent of
events, additional time beyond T = tFb was needed to
satisfy the 6.5 ft condition. This means that an
integration interval of peak following-vehicle braking
will suffice for most optimization cases for these
data. In Figure 6(b) for hard braking, a similar
distribution of ECA error is shown. The distribution
comparison of normal and hard braking of the time
between the length of the integration interval and the
time at maximum braking is shown in Figure 7.

This analysis shows that there is benefit in using an
integration interval that extends beyond the point of
maximum braking by the following-vehicle.
However, in most cases drivers will not be trying to
avoid the second stage of normal driving as they were
in the CAMP experiment. Thus, a computational
procedure such as the one just described that
compares actual and approximate closest approach is
not applicable. For these reasons, a second analysis
was done in which two values of integration interval
were used: T = tFb + 1 and T = tFb +2.

Optimization Using A Fixed Time Interval.

In this analysis, estimated closest approach (ECA)
was again used as the metric for comparison of each
scenario of the CAMP data. Comparisons of the
optimized closest approach vs. the actual closest
approach for the two intervals are given in Figures
8(a) and 8(b) for normal and hard braking; and these
figures show a much wider variation in ECA error
due to the removed constraint. The cumulative
distributions of actual minus optimized ECA are
shown in Figures 9(a) and 9(b) for normal and hard
braking respectively. Based on the information in
Figure 9, it was decided that a value of T = tpb + 2
sec would be used for the analysis of data described
in the next section.

Example of Optimization

As an example of application of a parameter
optimization process using a fixed interval, Figure 10
below with five frames (10a thru 10e) shows the

experimental input functions and the optimized
results of a typical hard braking rear-end CAMP
experiment. The first frame of the figure, 10(a),
shows the input experimental data for velocities and
range over the full experiment period. The second
frame of the figure, 10(b), shows the optimized
results of the same data for comparison. Frame 10(c)
shows braking profiles for both experimental and
optimized data. A range/range rate plot in frame
10(d) replots both experimental and optimized data
with time as a parameter. Frame 10(e) is a crash
prevention boundary (CPB) [5] plot based on the
optimized parametric description of driver’s
response. In the above case the optimization period
used was from zero to 7.03 due to the fact that the
peak value of dF occurred at 5.03 seconds. This
example demonstrates the use of the optimizer to
obtain the driver’s performance metrics from
measured inputs in a typical CAMP driving
experiment.

Applications

In this section, the parameter optimization process
developed in the preceding sections is applied to two
sets of experimental data. The first set comes from
an experiment in which a driving simulator was used
to test driver’s response to impending rear-end
crashes [7]. In this experiment, the drivers were
provided with an imminent crash warning for a
subset of trials and did not have such a warning for a
second subset. A second set of data is from the
previously mentioned CAMP test track experiment in
which drivers were exposed to sudden deceleration
by a preceding vehicle. In one subset of the
experiment, drivers were instructed to brake normally
while in a second subset they were instructed to wait
until the “last second” before braking. The simulator
data also shares the common feature that it has two
subsets; one of which represents a more hazardous
driving situation than the other.

By way of background, the previously referenced
tool for analyzing driver’s performance in situations
such as those described above, called the crash
prevention boundary (CPB) was introduced in 2001
[5]. The concept behind the CPB is that there is an
analytically definable line that separates driver’s
performance that prevents a crash from driver’s
performance that does not prevent a crash. A sample
CPB is shown in Figure 11. In reference [5] each run
from the driving simulator experiment was analyzed
using a CPB framework without the optimization
process. Each CPB had a specific set of initial
conditions of deceleration, range, and velocity as
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Figure 6(a). ECA Error, Variable Time Interval for Normal Braking.

Figure 6(b). ECA Error, Variable Time Interval for Hard Braking.
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Figure 7. Optimization Time Comparisons.

Figure 8(a). ECA Comparison for Fixed Optimization Periods and Normal Braking.

Figure 8(b). Estimated Closest Approach for Fixed Optimization Periods and Hard Braking.
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Figure 9(a). ECA Error, Fixed Optimization Times and Normal Braking.

Figure 9(b). ECA Error, Fixed Optimization Times and Hard Braking.
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Figure 10(a). Time Plot of Experimental Velocity and Range Data.

Figure 10(b). Time Plot of Experimental and Optimized Velocity and Range Variables.
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Figure 10(c). Optimized vs. Experimental Values Braking Profiles.

Figure 10(d). Phase Plane Plot of Optimized vs. Experimental Data.

Figure 10(e). Crash Prevention Boundary with Driver’s Response.
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defined by the test conditions. It was seen that
driving responses leading to a crash fell on one side
of the CPB; and driving responses leading to a non-
crash fell on the other side of the CPB. An extension
of the CPB concept is observing the closeness of the
driver’s response to the CPB curve, i.e. the distance
between the driver’s performance in a situation and
the CPB for that situation would be a useful metric of
the level of threat for specific situations. The
estimate of closest approach (ECA) based on the
optimization process during the threat management
stage of driver’s response is such a metric and is used
for the remainder of this analysis. To illustrate this
extension, lines of constant values of ECA are shown
in Figure 11 along with the CPB.

Of the data to be analyzed from the driving simulator
experiment [5, 7], only a single set of test conditions
from that experiment is used here. The condition
compares a series of runs without a warning to a

series of tests with a short warning time. The best
values of the parametric description of driver’s
performance for each run were calculated using the
previously described parameter optimization process.
These values were then used to calculate the ECA for
each run in the data sets. The distribution of ECA for
the two subsets is shown in Figure 12. Negative
ECA values in Figure 11 correspond to crashes. The
description of a driver’s performance would appear
as a point above the CPB in a diagram like Figure 11.
Positive ECA values correspond to non-crashes and
would appear below the CPB. From Figure 12, it is
seen that the difference in the two distributions of
ECA does reflect the relative hazard of the two types
of driving, with an imminent crash warning and
without. In those cases where the drivers had a
warning, the distribution of ECA is further to the
right. This indicates that these drivers were
performing in a manner that produces fewer crashes.
This corresponds to the location of the description of
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Figure 11. Various ECA Positions from a CPB Curve

Figure 12. Simulator ECA Histogram.

the driver’s performance being at a greater ECA
value from the CPB.

The results of a similar analysis of the CAMP project
are shown in Figure 13. The data in this figure
includes the combined responses for all three levels
of lead-vehicle deceleration (dL=0.15g, 0.3g, and
0.4g). It can be seen that there is a small difference

in the distributions of ECA between normal braking
and hard braking. As expected, the hard braking
subset produces smaller values of ECA (median ECA
for hard braking equals 28 ft. and median ECA for
normal braking equals 33 ft.

However, as seen in Figure 14, the distribution of
ECA conditions are noticeably different. In this case
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Figure 13. CAMP ECA Comparisons.

Figure 14. CAMP ECA Statistics for dL = 0.15 g

(dL=0.15g) the median value for hard braking is 28
ft. and the median value for normal braking is 52 ft.
These results substantiate the conclusion from the
driving simulator experiment that more hazardous
conditions are reflected in ECA cumulative
distributions that are farther to the left.

The results from the parameter optimization process
can also be used to study other aspects of driver’s
performance, for example, time-to-collision (TTC) at
the time of following-vehicle braking (TTCb). While
ECA estimates the effect of the driver’s response,
TTCb estimates the situation prior to the response.
For this analysis, TTC is calculated at the time that
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effective braking begins, as determined by the
parameter optimization process.

Figure 15 shows the distribution of TTC for the two
subsets of the driver simulator experiment (baseline
vs. warning). It can be seen that the values of TTCb
when the driver was given a warning are substantially
longer than when no warning was given. Similarly,
TTCb cumulative values more to the left represent a
higher degree of danger than cumulative values to the
right. The TTCb results for the CAMP experiment
are shown in Figure 16. As for the simulator data, it
is seen that the values of TTC for hard braking are
substantially shorter than when drivers braked in a
normal manner from cases where they waited to
brake per the hard braking instruction. These curves
indicate that cumulative distribution values on the

SUMMARY AND CONCLUSIONS

This paper consolidates three aspects of the art-and-
science of describing the crash avoidance
performance of motor vehicle drivers. The first
aspect is the recognition that drivers utilize a two-
stage process when responding to situations with the
potential of producing a crash. The second aspect is
the methodology for creating parametric estimates of
driver’s performance during the first stage, described
as the threat management stage. The third aspect is
an example of the uses of the parametric description
to assess driver’s performance.

Two examples of data presented herein support the
suggestion that drivers respond in a two stage manner
to situations with the potential of a rear-end conflict.
The first stage is threat management. This is the
stage that determines whether or not a crash will
occur. It is further shown that a parametric
description of driver’s performance during the threat
management stage provides a simple, but effective
foundation for analyzing driver’s performance in
these situations. The paper then develops a
consistent procedure for optimization of driving data
variables to determine the best description of the
driver’s performance during the threat management
stage of the following-vehicle driver’s response.
This procedure is used to analyze data sets from two
experiments, one that utilized a driving simulator and
a second that utilized a test track.

The major conclusion from this study is that
improved understanding of how drivers avoid rear-
end crashes can be obtained through the process
described and developed in this paper.
Quantitatively, this study shows that the distribution
of the time-to-collision at following-vehicle braking

is a good measure of the level of hazard of a driving
situation and that estimated closest approach (ECA)
is a good, single parameter measure of the driver’s
response to the hazardous situation.

As an example, in an experiment where some drivers
were provided with an imminent crash warning and
others were not, the median of the distribution of
Estimated Closest Approach was 40 ft. larger for
those drivers with the warning. This feature of the
process outlined in this paper offers the potential for
being a powerful tool for assessing the level of
hazard for various driving situations and the safety
impact of warnings and other crash prevention
measures.

NOMENCLATURE

Actual Data: Experimentally measured data.
Baseline: Driving data derived without giving a

driver a crash warning.
CPB: Crash Prevention Boundary. A hypothetical

boundary that separates driver responses
into crash and non-crash regions.

Cum: Abbreviation for cumulative values.
dF: Following-vehicle braking level in g’s.
dL: Lead-vehicle braking level in g’s.
dR/dt: The mathematical time derivative of Range.

ECA: Estimated Closest Approach.
ECA: Estimated Closest Approach. A computed

value of the minimum distance that two
vehicles would come from each other based
on known or computed values of velocity,
range, and deceleration in a rear-end driving
scenario.

ECA Error: Difference between optimized and
experimental ECA values.

Exp: Abbreviation for Experimental values.
IDS: Iowa Driving Simulator.
Opt: Abbreviation for Optimized values.
Opt End: Optimization end time.
R(t): Range as a function of time.
Range(t): Same as R(t).
Range-Rate/Range trajectory: Locus of all points in a

phase plot for a driving scenario.
Rdot: Range Rate, dR/dt.
Rexp: Experimental value of range.
Ropt: Optimized value of range.
Rear-end driving scenario: An event whereby two

vehicles approach each other in the same
driving lane due to the slower speed of the
lead-vehicle with respect to the following-
vehicle. The lead-vehicle may be traveling
at a constant speed or may be decelerating.

Smoothed Data: Experimental data that is smoothed
using an 11 point smoothing algorithm.



Burgett, 17

.

Figure 15. Histogram of Simulator TTC Values at Braking.

Figure 16. Histogram of CAMP TTC Values at Braking.

0

1

2

3

4

5

6

0 0.6 1.2 1.8 2.4 3 3.6 4.2 4.8 5.4 6 6.6 7.2 7.8 8.4 9 9.6

TTCb (sec)

F
re

qu
en

cy

.0%

20.0%

40.0%

60.0%

80.0%

100.0%

120.0%

C
um

ul
at

iv
e

%

Baseline

Warning

Bcum

Wcum

0

10

20

30

40

50

60

70

80

90

100

0 0.6 1.2 1.8 2.4 3 3.6 4.2 4.8 5.4 6 6.6 7.2 7.8 8.4 9 9.6

TTCb (sec)

F
re

qu
en

cy

.0%

20.0%

40.0%

60.0%

80.0%

100.0%

120.0%

C
um

ul
at

iv
e

%Normal

Hard

Ncum

Hcum



Burgett, 18

SSE: Sum of the squares of the errors between
experimental and optimized variables T: The
value of the integration interval for the SSE
function.

tFb: The time of following-vehicle brake initiation.
tpb: The time of peak braking for the following-

vehicle.
TTC: Time-to-collision based on no following-

vehicle response.
TTCb: Time-to-collision at following-vehicle

braking.
VF(t): Following-vehicle velocity as a function of

time.
VFexp: Following-vehicle velocity from experimental

measurements.
VFopt: Following-vehicle velocity from the

optimization process.
VL(t): Lead-vehicle velocity as a function of time.
VLexp: Lead-vehicle velocity from experimental

measurements.
VLopt: Lead-vehicle velocity from the optimization

process.
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Appendix A Solutions of the SSE Equation

In order to examine the SSE function:

∫
−+

−+−=
T

0 2
optexp

2
FoptFexp

2
LoptLexp

dt)]R(R

)V(V)V[(VSSE

for the location of global minima, the function was
computed for incremental values of dL, dF, and tFb
to determine values of VF, VL, and R to compare
with actual experimental values. It is necessary to
determine if the optimizer is most likely finding a
unique minimum for all available minimum
solutions. Solutions for SSE in one sample case as
given by the equation below were then plotted as
three-dimensional surfaces, one surface per constant
value of dL. The values of T is constant for all
solutions.
Several local minima were located for the surface
where dL=0.15. The actual solution obtained by the

algorithm was SSE = 16.9, for the values of dL =
0.15, tFb = 1.92, and dF= 0.21. Examination of all
the other surfaces plotted for 0<dL<1.0, showed no
lower minima other than that found by the optimizer.
Three views of the surface for dL=0.15 are shown in
Figures A-1, 2, and 3 to depict the presence of local
minima in this plane. Since the character of the
experimental data a reasonably uniform, it is
concluded that a unique minimum is found
consistently by the optimizer for these data.

Plots of the time-varying functions, both
experimental and optimized, are shown in Figure A-
4, 5, and 6 for the velocities, range, and
displacement; the braking functions; and the
Range/Range Rate plot. It should be noted that the
optimization process ended 2 seconds after the
experimental peak value of dF. It should also be
noted that the optimized values of dF and dL are
constant for the scenario.

dL=0.15

Figure A-1 Constant dL Surface.
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dL=0.15

Figure A-2. Constant dL Surface Rotated CCW.

dL=0.15

Figure A-3 Constant dL Surface Rotated CW

Figure A-4 Time-Varying Experimental and Optimized Functions
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Figure A-5 Time-Varying Experimental and Optimized Braking Functions

Figure A-6 Range vs. Range Rate for Experimental and Optimized Data
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